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EFFECT OF CHARGE RADIUS ON DETONATION VELOCITY 

R. B. Parlin and D. W. Robinson 

Abstract 

The derivation of the detonation velocity of an ideal wave in 

an imperfect gas obeying the equation of state of the foi 

i/vj ~ Vpv ■ nRTe u- 
>is given.    Assuming the curved-front theory, the effect of radial 

expansion on the velocity of propagation of a non-ideal detonation 

wave is treated using the above equation of state.    The significant 

approximations involved are discussed and the final equations are 

given in a form easily applied to experimental data.    The results of 

this study suggest that longer reaction zone lengths than those 

previously obtained using a constant co-volume may be appropriate. 

/ 
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EFFECT OF CHARGE RADIUS ON DETONATION VELOCITY 

R. B. Parlin and D. W. Robinson 

1. A qualitative discussion of the curved-front theory is given 

in Chem. Rev. 45, 69 (1949) (Eyring, Duffy, Powell and Parlin) and 

in Technical Report No. I (January 1, 1952) (Parlin, Thome and 

Robinson). Reference for complete details of this theory should be 

made to these reports. Briefly, however, the theory explains the 

observed decrease in detonation velocity arising from a reduction 

in the radius of the charge. Consider a detonation wave propagating 

along a charge of radius R and of infinite length. Due to the ex- 

panding gas front, a rarefaction wave is sent into the reaction 

zone. Such a rarefaction wave will overtake the front of the wave, 

giving rise to a reduction in its velocity and a curvature of the 

detonation front. 

2. Before proceeding with a general analysis of the curved- 

front theory, let us derive the detonation velocity of ar. ideal wave 

in an imperfect gas, assuming an equation of state of the form 

pv • nRTex (2.1) 

where 

x-K/v. (2.2) 

Previous studies have used a constant co-volurae equation of state. 

This derivation results from a simultaneous solution of the 

hydrodynamic equations.   The equation of continuity for a plane 

wave is 

Ü/0 - v/vo (2.3) 

and the aquation of motion is 

p * U2/v • D2/v0 ♦ p0 (2.4) 

Furthermore, the equation of energy conservation is 

AE ♦ pv ♦ 1/2 U2 - AQ ♦ 1/2 D2 ♦ pQVo     (2.5) 
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where 

AE - Cy (T - To) = Cv (pv/nRe
X - TQ)        (2.6) 

T 

'T_ v 

F 
o 

and Cy ■ T°M T  , since the internal pressure p. ■ T (-s£) -p is 
o v /v 

zero by equation (2.1). 

Substituting (2.6) into (2.5), 

where 

L'pv ♦ 1/2 (U2-D2) - Q (2.7) 

Q - AQ ♦ CyTo (2.8a) 

and 

L» - Cy/nRe
x ♦ 1 (2.6b) 

and where p is assumed to be negligible compared to p. The 

Chapman Jouguet condition is 

»' " (*)s ' 

Di'fferentiating (2.1) with respect to v, and using the thermo- 

dynaraic relations 

we have 

Ws    v L 

x 
V 

where 

Hence, by (2.9), 

o 

From (2.3), (2.4) and (2.11) 

1A • 1 ♦ nRe3/*, ♦ x (2.10) 

D2/v 2 - p/vL (2.11) 

D2/p • vo/(l-v/vo) - vo
2/vL 
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or 

v/vo = 1/(1+L) (2.12) 

For the explosive EDNA, the ratio of v/v   given by (2.12) 

has been calculated as follows for x in the range 0.8 to 2.2, 

using C    and n data obtained in Technical Report No. VI. 

x 0.8       1.0       1.2       1.6       1.6       2.8       2.0       2.2 
v/vQ       0.708  0.724   0.745   0.763   0.778   0.792   0.805   0.815 

This illustration indicates the degree of error introduced by the 

approximation 

v/vo - 3/4 , (2.13) 

which will be assumed reasonable for most solid explosives 

and used in this discussion. 

Also, from 2.7, usin? 2.3, 2.11 and 2.12, 

-2 o 
(L'L + 1/2)  (1*L).     - 1/2 - Q/D/ 

where D.  is the ideal detonation velocity. 

3*    Let us know proceed to analyze the non-ideal detonation 

wave under the assumptions of the curved-front theory.    Assume as 

a first-order approximation that any small region of the wave-front 

is spherical.   Then the normal detonation velocity D may be cal- 

culated from the conservation equations appropriate to a spherical 

detonation wave with r   the local radius of curvature. 
o 

If a is the angle the normal makes with the axis of propagation 

and if the wave proceeds without a change of shape (steady-state) 

D • D cos a 
o 

where D   is the propagation velocity of the wave itself. 

Integration of the differential equation of continuity for a 

spherical shock leads to 

Ü/D- v6/vo (3.1) 
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where r -a v  o a, 
9-1+2^/  XdP. (3.2) 

ro 

Here D is the normal detonation velocity, W the particle velocity, 

v the specific volume of the reaction products, r the radial 

distance coordinate, r the radius of curvature, and a the (constant) 
'0 o 

length of the reaction zone. Using (2.13) and assuming the re- 

lation W/D - 1-v/v appropriate to a plane wave, by integration 

of (3.2) we have the approximation 

9   - 1 ♦ 2/3 In (1 -p). (3.3) 

Using (3.1), the equation of motion for a plane wave in a 

steady-state can be written 

p+ü^i £ m±, (3.0 
ae2 

The equation of energy and the Chapman-Jouguet conditions are 

given in Section 2. In solving these four hydrodynamic relations 

for D, let 
2 

z « pv/D ,    b ■ v/v ,    and u> • U/D 

then, 

u) » be (3.5) 

♦ Ü©    ^.D 0.6) 
20* 

Vz ♦ 1/2 (w2-l) - Q/D2 (3.7) 

b\ - t (3.Ö) 
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By (3.5), (3.6) and (3.8), 

b - £—5 (3.9) 
2L+(1* 94) 

If Now we set 

2<p - 1 - 9 2, (3.10) 

then (3.9) becomes 

1 

Also, 

Substituting (3.12) and (3.13) into (3.7), 

(LL* ♦ 1/2 (1-2*))  i-5 - 1/2 - Q/n2 , 
(i*wr 

or 

(3.11) u  l+L-9 • 

By (3.8) and (3.11), 

z -  ^-s (3.12) 
U+L-qO2 

a)2« -1=2«-. (3.13) 
(l*L-9)2 

A ♦ Lf - 1/2 *2 - (l*L-<p)2 Q/D2 , (3.U) 

where 

A • L (V  - 1 - 1/2 L). (3.15) 

Under ideal conditions, f ■ 0, i.e., 

A - (1«L>2 Q/D^ 
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Hence, from (3.14), 

T      L 12 

(l+L)2        D2 
(3.16) 

For small values of cp, a good approximation to (3.16) is 

1 1-M'g 
D.    *    1+N'cp (3.17) 

where 

M»  - 1/(1*L),    N'  « 2( J.^ (3.18) 

As an example of the percentage error involved in the approxi- 

mation of equation (3.17), consider the case of x ■ 1.8, C   • 0.44, 

Cv ■ 0.38 and n ■ 34.94 for the composition EDNA.   The error is less 

than 2 per   cent for <p less than 0.1, which corresponds to 

greater than 0.9 (and less, of course, than 1.0). 

4.    In order to determine the shape of the detonation front, 

it is sufficient to find a parametric representation of the cross- 

section of the front, recognizing the symmetry of the wave around 

the axis of the charge (see Fig. 1).    For any point of the front, the 

radius of curvature is given by r   • ds/da, where s is the distance 

measured along the front, and a the angle the normal makes with the 

wave-front.   Also, from (3.3) and (3.10), 

• • - 2/3 In (l - 7s)    (l * 1/3 ln (x - TV 
O '        x 0< 

k plot of this function (rig. 2), gives a good linear approxima- 

tion in the form 

♦ " 0-7 Vro (4.1) 

for a /r   < 0.75. o   o 
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If DQ/D.  = 6, then since D ■ D   cos a, by using Eq.  (3.17), 

1-a M da/Ho 
D/D.   * 6cosa= °     ,    S 

1+aoN      /dS 

(4.2) 

where M ■ 0.7 M', and N = 0.7N1.    Proceeding as in Technical 

Report No. 1, we obtain 

y = a ((M+N)K    - N sin a) (4.3) 

where 

(M+N .      l-6cosa      .,. A 

■2     K     tan -1 Ull=&  ' tan 1) " 6    (4.4) 
^T? 

Equations (4.3) give the parametric representation of the wave 

front.    For the case of a solid explosive surrounded by air, the 

final angle can be taken to the IT/2»    For this case we have, 

y /a = (M+N)K    - N c c (4.5) 

where 

6^1-5 
tan-^1-5     -% (4.6) 

The universal function K    is given in the following table. c 

0.000 1.00 .850 3.93 
.200 1.19 .875 4.44 
.300 1.32 .900 5.11 
.400 1.45 .925 6.13 
.500 1.69 .950 7.86 
.600 1.99 .975 11.86 
.700 2.45 .990 19.90 
.750 2.78 .994 26.32 
.800 3.24 .997 3*. 12 
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As an illustration, using theoretical data for the composi- 

tion EDNA as given in Technical Report No. VI, the following 

results are   obtained.    Figure 3 is a plot of the ratios D /D. 

to a fa   for various densities, o    c 

997   0.994   0.990   0.975   0.950 0.900 0.850 0.7*0 lo    N^    t 
1.58   art/r^    0.022   0.032   0.042   0.072   0.11   0.18   0.24   0.36 

0.025   0.037   0.049      .084   0.13      .21   0.28   0.42 1.20 
0.93 

o'   o 

0.028   0.041   0.055      .094   0.15      .23   0.31   0,46 

The relationship of D /D.    to a /y   is often approximated 

linearly.    Such an approximation introduces about a five per cent 

error for ideal conditions, as can be seen by a linear continuation 

of the curves in Figure 3. 




